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CREST: Center for Aquatic Chemistry & the Environment (CACE) 

Subproject 3: Data Analytics for Effects Assessment and Decision Making 

Project Summary 
During the past three decades, incidents involving pesticides, industrial chemicals, oil, pharmaceuticals, 
nutrients and metals have attracted worldwide attention and greatly affected environmental conditions 
(e.g., the Gulf of Mexico Deep-water Horizon Oil spill).  These events demonstrate a regional, national 
and international need for enhanced research on the effects of toxic substances in the environment.  The 
proposed CREST Center for Aquatic Chemistry & the Environment (CACE) at Florida International 
University (FIU) will transform the institution by integrating discrete campus-wide programs across 10 
departments and 4 colleges in fields from environmental chemistry through computer intensive data 
analysis and visualization, in order to tackle one of the regions most complex challenges: environmental 
contamination. CACE will create innovative opportunities for students, especially encouraging those 
from underrepresented minorities (URM), to participate in authentic research and foster their development 
as future STEM professionals. FIU CACE will unify this talented pool of researchers into a cohesive 
Center that will enhance collaborations, partnerships and synergies. The Center will bridge academic 
programs that exist across campuses by integrating graduate and undergraduate students into all 
research subprojects, emphasizing evidence-based educational approaches, technology advances, and 
analytical chemistry infrastructure, while providing authentic research experiences and solutions.  CACE 
will transform cutting-edge research into technological and science-based solutions for various forms of 
water contamination using a framework that includes detection/identification, transport and fate in 
complex ecosystems, and data analytics and visualization. CACE will develop a modeling platform that 
will enable policy makers and managers to make informed decisions.  FIU's CACE will work in 
collaboration with governmental and private sector partners in S. Florida to develop practical solutions to 
problems related to water quality in a natural-agricultural-urban setting. This partnership includes the 
South Florida Management District, the National Park Service, The Miccosukee Tribe of Indians, the 
Environmental Protection Agency, Everglades National Park, Department of Interior, and others. 

Intellectual Merit 
FIU CREST CACE will increase opportunities for graduate and undergraduate students, especially 
encouraging those from URMs, to conduct authentic research while advancing aquatic and environmental 
chemistry research and data analytics, methodologies, ecological risk assessments. CACE will generate 
significant new knowledge regarding contaminants and pollutants in aquatic environments, as well as 
produce innovative new methodologies for detecting and assessing contaminant quantities and impacts, 
including the use of molecular detection techniques.  Using new data analytic approaches for visualization 
and synthesis of complex data, CACE will provide managers and policy makers, including governmental 
and private sector partners in S. Florida, real-time, accessible decision tools.  The proposed program will 
advance current efforts on the biological effects, transport, transformation and distribution of 
contaminants in the environment into new collaborative research areas that investigate the sources and 
transport of contaminants and pollutants in aquatic systems. The research conducted by the Center will 
inform the economic, environmental, societal, policy, regulatory, and legal implications of water quality 
issues.    

Broader Impacts 
CACE will build on the success of FIU’s evidence-based transformation of STEM instructional practices to 
provide enhanced support for students to pursue and complete STEM graduate degrees, both at FIU or 
elsewhere. Through an innovative program that spans the graduate school to high school spectrum, 
CACE will increase the success of students in graduate programs, especially supporting participation of 
underrepresented students in aquatic chemistry and environment (ACE) fields and future professions. 
CACE will develop technologies for improving water quality analysis and contaminant detection, as well 
as translate research findings into actionable information for decision-makers and stakeholders. By 
providing potential scenarios for understanding the risks, sources, transport and impacts of chemical 
contaminants that threaten aquatic ecosystems and human wellbeing, CACE can impact global water 
quality. 
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Subproject Relevancy Statement 
Subproject 3: Data Analytics for Effects Assessment and Decision Making 
Technological advances in hardware, storage, and software have significantly increased scientists’ ability 
to find new ways of generating and using data, thus creating new possibilities for conducting research to 
address the complex challenges of environmental contamination and ecological risk assessment. 
Conducting scientific research through high-resolution data acquisition, data mining, and visualization 
enables scientists to better understand the transient nature of aquatic data and pollutant movement 
across various boundaries. 

However, data intensive science requires significant collaboration between environmental and 
computer scientists. This collaboration is becoming increasingly critical in finding better and more 
effective ways to research, discover and solve problems.  The research conducted by this Subproject will 
facilitate such collaboration and support CACE researchers at the proposed CREST Center to better 
detect and understand the sources, transport, transformation and ecosystem responses to contaminants, 
pollutants and other natural stressors in the aquatic systems of south Florida. 

Using a data-intensive approach, CACE researchers will be able to: 1) provide detailed 
characterization and measurement of the environmental pollutants, 2) improve predictive abilities on 
effects of pollutants and address future water quality issues, 3) explore, manipulate and visualize data 
thus collaborate more effectively for risk assessment, 4) conduct literature mining on the nature of 
contaminants and access relevant environmental information rapidly, and 5) communicate more 
effectively with decision makers and other stakeholders. The ultimate goal of this Subproject is to 
support data-intensive research on aquatic chemistry and the environment by developing 
transformative and scalable methods for data mining and management, advanced computational 
modeling, and visualization. The table below is a summary of how this Subproject relates to the two 
other Subprojects of the proposed CREST Center. 

Links between CACE 
subprojects 

Subproject 1:  Advanced Sensing 
of Environmental Exposure to 
Anthropogenic Contaminants, 
Pollutants and Other Natural 
Stressors 

Subproject 2: Quantifying the Fate 
and Transport of Contaminants  
across Natural, Agricultural and 
Human Systems 

Subproject 3: 
Data Analytics for 
Effects Assessment 
and Decision 
Making 

• Create novel multi-tiered data
analysis architecture, consisting
of sensors and cloud/HPC
computing systems

• Provide mining capability
investigation by utilizing
associations and correlations
among the data to understand the
characteristics and to extract
semantics and patterns from the
data

• Provide techniques for managing
complex analogue environmental
and digital molecular biology
digital data

• Provide synthesis and analysis of
gene function networks

• Create data visualization and
decision making support tools

• Provide mining capability
investigation by utilizing
associations and correlations
among the data to understand the
characteristics and to extract
semantics and patterns from the
data

• Provide data analysis support for
quantifying and trend identification
of current and historical sources
and loading of pollutants,

• Develop appropriate visualization
tools to examine specific plausible
and realistic scenarios for future
changes in water and land
resource management

• Provide capacity for literature
mining of biological and visual
analytics and visualization
algorithms to assist in assessment
and strategic decision-making
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Subproject 3: Data Analytics for Effects Assessment and Decision Making 

1. Introduction

Computational research and tools developed under this Subproject are designed to support the CREST 
Center’s team efforts in identification of source, transport, transformation and ecosystem responses to 
contaminants, pollutants and other natural stressors.  Researching environmental contamination and 
ecological risk assessment requires investigation of non-chemical, as well as organic and inorganic 
chemical stressors including nutrients, contaminants and pollutants with a multitude of exposure types 
(e.g., single-slug, intermittent and continuous) with native, exotic and standard test species.  

Conducting this research entails collection of large volumes of data from various heterogeneous 
sources such as data from analytical chemistry techniques and data from biogeochemical cycles used to 
determine how natural processes affect ecosystems.  As the scale and complexity of these data types 
increase exponentially, it becomes challenging to effectively model the increasing volumes of data, 
discover useful information, and provide data analytics capability to support effective and accurate 
assessment and decision-making capability for the scientists and their partners.  

To address these challenges, the CREST center will provide a suite of data analytics algorithms, 
including computation modeling, data mining, and visualization tools.  The computation-modeling 
component provides the computational and system support for diverse data analytics and decision-
making tasks based on novel multi-tiered data analysis architecture. As data analysis tasks are 
computationally intensive, we will address system and architecture issues related to computational 
requirements for data gathering, data analysis, and decision-making (Liu et al., 2014; Ren and van der 
Schaar, 2013; Xu et al., 2012; Xu and Shatz, 2003).  

Two areas of computing research will be developed. First area will focus on creating novel multi-
tiered data analysis architecture, consisting of sensors and cloud/HPC computing systems. Second area 
will be to support data mining and visualization research components. The novelty of this architecture is in 
allowing data analysis to be conducted at different granularities and satisfy different timing requirements 
(from near-real-time, global static data analysis to real-time, local dynamic data analysis). 

The data mining component proposes a comprehensive investigation on utilizing associations and 
correlations among the data to understand the characteristics and to extract semantics and patterns from 
the data (Chen et al., 2007; Ha et al., 2013; Ha et al., 2015; Lin et al., 2012; T. Meng and M.-L. Shyu, 
2013; Shyu et al., 2005; Thompson 2005; Yang et al., 2014). This component will also develop the 
dimension reduction and information fusion algorithms to address the scalability and multi-source issues 
(Gehler and Nowozin, 2009; Ha et al., 2013; Liu et al., 2009; Yu and Liu, 2003).  
        Once large amounts of heterogeneous data are processed by the computation modeling component, 
it will be ready for easy access to useful information and pattern extraction that can assist quick 
evaluation and assessment of contaminants transport and fate.  This will be support a collaborative effort 
among various stakeholders including scientists, local government and industry partners to create 
plausible and realistic scenarios for evaluating the risk and possible course of action for the South Florida 
Region. 

  The visualization component focuses on developing visual analytics and visualization algorithms to 
assist in assessment and strategic decision-making. This research will explore novel ways of displaying 
information visually, aggregating existing techniques into visual ensembles that are tailored for solving 
specific problems and providing the interactive means for users to work with these systems in their 
specific context (Li et al., 2009; Saleem et al., 2007; Zhang et al., 2006). In particular, we would like to 
create novel visualization and visual analytics methods for displaying complex data types, data 
aggregates, and analytic concepts at the border between humans and computing. 

2. Research Plan
Our research plan is focused on developing new methodologies to support detection and evaluation of

trends, analyzing contaminant transport, and creating visualization tools for querying data that allows for 
early intervention and restoration of the water and the ecosystems of South Florida. This plan will be 
conducted in four research thrusts as described below.  



4

2.1 Multidimensional Data Analytics of Environmental and Molecular Biology Information 
The research conducted by scientists in Subproject 1 requires characterization and measurement of 

a myriad of stressors associated with urban and agricultural landscapes. Using advanced methodologies 
they will collect vast amounts of data to determine the environmental exposure from trace analysis of 
critical pollutants such as nutrients, trace metals, DDT and PCBs to other biologically active compounds 
such as antibiotics and pharmaceuticals (e.g. endocrine disrupters), mercury, black carbon and fossil 
fuels (oil). These data will be of two types: 1) environmental data that are analog parameters; and 2) 
molecular biology information that have a digital signal. 

The environmental data have identity (parameter), intensity above a threshold (signal or 
concentration), and potentially an environmental limitation benchmark as well as toxicological indicators. 
The parameter list could be as large as 100 to 200 items. The molecular biology data will be much larger 
and will include a "gene identity" (related to a function i.e., gene responsible for metal detoxification); and 
whether exposure to environmental stressors caused the gene to be under-expressed (-1), over-
expressed (+1), or showed no change (0) when compared to the untreated group. These data could rank 
in the thousands depending on the generating methods. All these data can be represented and expanded 
on in a matrix such as the one shown below: 

Sample ID Temperature Concentration Toxicity 
effect 

Location Gene Signal Epigenomic 
Markers 

Other 
Parameters 

 
A1 Analog Analog Analog Analog Digital Digital Digital
A2 Analog Analog Analog Analog Digital Digital Digital

Analog Analog Analog Analog Digital Digital Digital
B1 Analog Analog Analog Analog Digital Digital Digital

Analog Analog Analog Analog Digital Digital Digital
C1 Analog Analog Analog Analog Digital Digital Digital

In Subproject 2, CACE scientists will examine the biogeochemical processes that govern the 
ultimate fate of these pollutants and their impacts on the environment. They will establish three transects 
that encompass the main transitions between agriculture, urban and natural landscapes. These transects 
will provide a common platform for detection and measurement for Subproject 1, sample water quality 
with a common experimental design, and application of advanced modeling techniques to couple flows 
with contaminants.  The generated data from this process will provide a third dimension to the matrix 
provided above to inform our data analytics research. 

Low-rank matrix factorization:  
The matrices generated from Subprojects 1 and 2 could involve low-dimensional structures (e.g., 

sparse or low-rank).  In particular, the numbers of samples in these cases are typically far less than the 
total number of degrees of freedom (i.e. determined by the analog parameters and molecular biology 
information).  The goal of our analysis is to understand the relationships between the samples and the 
parameters and the relationships among various parameters.  Factor analysis (Child, 2006; Mulaik, 1972) 
or topic modeling (Blei et al., 2003) can be used to establish the relationships.   In this project, we will 
jointly perform factor analysis and topic modeling while exploiting the low-dimensional matrix structure.    

Compute the densely connected components:  
 In genomics, given a protein interaction network, it is often useful to compute the densely 

connected components as protein interaction modules. In these cases, the input data is the adjacency 
matrix A of an undirected graph with weights in {0;1}. We can formulate the problem as computing 
maximal cliques, although the rigorous definition of a clique is often unnecessary.  We propose to solve 
the following optimization problem: 
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where  is a parameter (Ding et al., 2008). The nonzero entries in the solution vector correspond 
to the vertices of the densely connected component we are seeking. It can be shown that: (1) a maximal 
clique is obtained when , while setting Aii = 1 (this enables us to generalize this 
approach to bipartite graphs). (2) When  , this formulation reduces to the Motzkin and Strauss 
formulation  (Motzkin & Straus, 1965), where Aii = 0 is required. (3) As  goes close to 1, the sparsity of 
the solution increases steadily, reflecting the close relation between L1 constraints and sparsity. At   = 2, 
the solution is given by the principal eigenvector of A. 

2.2 Synthesis and Analysis of Gene Function Networks   
Computational methods for gene functional prediction fall into two categories: direct annotation 

schemes, which infer the function based on the functional annotations of genes in its neighborhood in the 
network, and module-assisted schemes, which first identify modules of related genes and then annotate 
each module based on the known functions of its members.  In this project, we are interested in 
computation methods of the second category (i.e., module-based methods).  The key step of methods 
falling in this category is to identify biologically meaningful functional modules. Cluster analysis is a 
popular methodology for the extraction of function modules from genes and protein interaction networks 
since it has been observed by biologists that groups of highly interacting proteins could be involved in 
common biological processes (Spirin and Mirny, 2003).  

However, the special characteristics of the data obtained from high-throughput experiments make 
the clustering task for identifying the function modules very challenging. These challenges include: (a) 
Poor data quality: The data obtained from the high-throughput experiments are quite noisy and contain 
many false positives. (b) Specific topological and network properties: The network structure from the data 
has been observed to have high clustering coefficients and modularity (Yook et al., 2004; Jeong et al., 
2001; Ravasz et al., 2002).  

A few genes/proteins in the network may have very large degrees while most others only have very 
few interactions. Clustering algorithms in this context need to pay attention to these topological and 
network properties. (c) Huge Volume: The datasets obtained from the experiments are of a large volume 
including tens of thousands of interactions among thousands of proteins even for a unicellular eukaryotic 
organism. Hence, clustering algorithms need to be fast and scalable. (d) Multi-functional: A gene/protein 
is often multi-functional and often involved with multiple modules. Hence clustering algorithms need to 
support “soft assignments”, i.e., assigning a protein into multiple groups. 

Clustering algorithms for extracting function modules should address these challenges.  Despite the 
significant progress that has been made in the area, existing clustering methods for extracting function 
modules are far from satisfactory due to the presence of noisy false positives, specific topological 
challenges, and the huge amount of data (Asur et al., 2007; Jaimovich et al., 2006). In addition, most of 
the existing methods do not support the “soft assignment” as they assign each gene/protein into a specific 
group. 

In this project, we propose to develop ensemble-clustering methods for combining multiple, diverse 
and independent clustering results to improve the quality and robustness of identification. Different base 
clustering algorithms (e.g., spectral clustering algorithms and graph clustering algorithms) might have 
their own strengths and limitations. Ensemble clustering offers an appealing framework for taking 
advantage of the strengths of individual clustering algorithms and for improving the quality of identification. 

Base Clustering:  
In addition to the conventional clustering algorithms, e.g., network motifs, local cluster growing, 

graph-theoretic, and hierarchical clustering (King et al., 2004; Brun et al., 2004; Arnau et al., 2005; Dunn 
et al, 2005; Enright et al., 2002), we will also explore the use of spectral clustering algorithms with diverse 
yet informative topological and graph properties (e.g. edge-betweenness and clustering coefficients) as 
base clustering algorithms. Spectral clustering algorithms have well-motivated objective functions that can 
easily incorporate the graph properties and can be computed efficiently using mature scientific computing 
software tools. 

A spectral clustering algorithm is obtained by recursively applying a spectral method for graph 
partitioning (Shi and Malik, 2000; Dhillon et al., 2007). Let Q denote the Laplacian matrix of a graph with 
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weights wi j on its edges <i; j >: the diagonal elements qii of Q is the sum of the weights of the edges 
incident on the vertex i, and for other elements, qi j =wi j. The partition problem is first modeled as the 
minimization of a quadratic program pTQp over all partition vectors p, whose elements are either 1 or -1. 
The integer constraints can be relaxed and we can then solve the continuous version of the optimization 
problem over real vectors with components bounded in the interval [-1;+1]. The solution to the continuous 
optimization problem is obtained by computing the eigenvalues or singular values of pTQp. The 
eigenvector components provide a natural soft assignment since the values in the components reflect the 
degree of association between the vertices and the clusters.  

Ensemble Clustering: 
Ensemble clustering, also called aggregation of clustering, refers to the situation in which a number 

of different clustering results have been obtained for a particular dataset and it is desired to find a single 
(combined or consensus) clustering which is a better fit in some sense than the existing clustering results 
(Hu et al., 2006; Gionis et al., 2005). Empirical evidence has suggested that ensemble clustering can 
improve clustering robustness and discover useful cluster structures even if the data is quite noisy 
(Topchy et al., 2004).  

However, there is a significant drawback in current ensemble clustering approaches (Strehl and 
Ghosh, 2002; Asur et al., 2007), i.e., all input clustering solutions are treated equally, despite the facts 
that: (1) different input clustering results could differ significantly, and (2) subsets of input clustering 
results could be highly correlated.   As a result, when collecting a large number of input clustering results, 
quite often many clustering results could be close (similar) to each other. These would easily skew the 
final consensus clustering. Hence, simply applying current ensemble clustering for extracting protein 
function modules is inadequate. 

In this Subproject, we propose the weighted ensemble clustering for extracting protein function 
modules. In (Li et al., 2007), we show that the ensemble-clustering problem can be efficiently solved 
within the nonnegative matrix factorization framework. Building on our previous work, the weighted 
ensemble clustering can also be formulated as an optimization problem. In weighed ensemble clustering, 
different input clustering results weigh differently, i.e., a weight for each input clustering is introduced, but 
the weights are automatically determined by an optimization process similar to a kernel matrix learning 
(Lanckriet et al., 2006).  It should also be noted that the weights obtained in the weighted ensemble 
clustering could be useful for selecting input clustering. Clearly, an input clustering with larger weight 
contributes more to the final consensus clustering. 

Heterogeneous Data Integration: 
The data from heterogeneous data sources (e.g., gene expression and protein interactions) are 

useful for inferring gene functions (Bhardwaj and Lu, 2005; Jansen et al., 2002; Tu et al., 2006, Wang et 
al., 2012).  Despite previous efforts in the integration of heterogeneous data, there is still a lot of room for 
improvements since the information enriched in each biological source has not been fully utilized. 

The integration of different types of experimental data into an overall model is a critical and 
challenging task because of the vast difference in data type, dimension and quality (Shannon et al., 2003; 
Cline et al. 2007; Camargo and Azuaje, 2007). Two major problems must be addressed in order to 
integrate the heterogeneous data sources/types and extract the optimal conclusions from the combined 
data: (a) Data types must be unified or scaled in order to allow comparison and combination. For example, 
gene expression data is continuous and relative in nature while protein interaction data is pairwise and 
binary; (b) the data must be weighted or verified in a quantitative and consistent manner. 

In this project, we will use the following three approaches for data integration.  

1. Feature Integration: This approach enlarges the feature representation to incorporate all data and
produces a unified feature space. In particular, continuous data types will be converted into
discrete levels and categorical data type will be mapped into similar discrete levels. The data are
then transformed into the same feature space and standard computational methods, such as
prediction and clustering, can be performed. The advantage of feature integration is that the
unified feature representation is often more informative and also allows many different data
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mining methods to be applied and systematically compared. One disadvantage is the increased 
learning complexity and difficulty as the data dimension becomes large. 

2. Semantic Integration: This approach keeps data intact in their separate original form.
Computational methods are applied to each dataset separately. Results on different datasets are
then combined by either voting (Carter et al., 2001), Bayesian averaging (Bishop, 2006), or the
hierarchical expert system approach (Jordan and Jacobs, 2004). This approach seems to work
reasonably well. One advantage of semantic integration is that it can implicitly learn the
correlation structure between different sets of features (Li and Ogihara, 2005).

3. Intermediate Integration: This approach can be viewed as a compromise between the feature-
level integration and the semantic integration. The data is kept in their original form and they are
integrated at the similarity computation or the Kernel level (Lanckriet et al., 2006). For example,
for protein pi and pj, their total pairwise similarity or affinity is Sij = Aij + Bij, where Aij is computed
from gene expression profiles and Bij is obtained from protein interaction. Standard computational
methods can then be applied once the total similarity is computed.

We will carefully compare these integration methods in this project and explore their trade-offs through 
the design of suitable experiments. 

2.3 Literature Mining and Curating Biological and Environmental Information 
The biological and environmental literature databases provide knowledge warehouses to cross-

reference experimental and analytical results with previously known biological facts, theories, and results. 
They can also be used to identify function commonalities of genes. In this Subproject, we propose to 
incorporate expert genetic knowledge for function discovery, instead of relying on purely empirical 
methods.  Each domain expert only knows a few objects well. Hence relating the measurements in 
observation data with existing knowledge is a key part for data analysis. Mining on observation data alone 
may not be able to reveal the biological information and the pollutants impact. On the other hand, 
references on the literature will provide additional information.  We will facilitate using text literature as a 
guide for detection, identification, and effect of chemical stressors in the ecosystem.   

There are many literature databases publicly available. One good source is KEGG (Kyoto 
Encyclopedia of Genes and Genomes).  This is a particularly high-quality data source, as it is curated by 
a knowledgeable team based on reported information in the scientific literature and is continuously 
updated. Text mining techniques can be applied to provide descriptive information from the literature.  

There are two steps when performing text mining on a set of literature documents: (1) Document 
Pre-processing; (2) identification of text summaries with observation data. Document pre-process 
includes stripping unwanted characters/markup (e.g, HTML tags, punctuation, numbers, etc.), removing 
common stop words (e.g. a, the, it, etc.) and stemming keywords into “root” words etc. developing a 
synonyms list.  Note that there are many words and phrases that refer to the same entity, hence a 
synonyms list will also be developed in pre-processing. After document preprocessing, step (2) is to thus 
provide meaningful textual summaries with the information that domain experts may be interested in. 
Therefore, techniques to perform text summarization will be studied (Mittal et al., 2000; Lin & Hovy, 2002). 

In this project, we will investigate keyword search based algorithm and sentence extraction for 
literature summarization (Kankar et al., 2002; Masys et al., 2001; Jurafsky and Martin, 2008).  

After we get the literature description, the remaining question is how we should combine the 
literature information with observation information.  There are some existing approaches such as 
MedMiner (Tanabe et al., 1999) and PubGene (Jenssen et al., 2001).  Medminer first performs clustering 
on observation data and then interprets textually while PubGene first performs clustering on textual data 
and then interprets numerically). These two techniques will be studied initially.  However, both types of 
approaches ignore the correlation structure between different sources.  We discuss the integration of 
different data sources in a separate section. 
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2.4 Data Visualization and Decision Making Support 
Visualization of the dynamic variables affecting the hydrology, fate and contaminant transport in 

ecosystems of south Florida can be critical in understanding, identifying and acting upon valuable 
information produced by Subprojects 1 and 2. First, visualization can help the scientists in both groups to 
understand and interpret patterns in the data (Goldstein et al., 1994; Ward, 1994). For example, a scatter 
plot can help to identify patterns of significance from a large amount of monitoring data. To display 
categorical data in the matrices, the categorical values need to be mapped into numerical values. One 
challenge is to choose an effective mapping, as a random order may not be effective, as it tends to 
spread the data across the visual space. We will combine clustering and dimensionality reduction 
techniques for better visualization. 

Second, by developing event relationship networks, a graphical representation of event correlation 
(Burns et al., 2001), we will enable the domain experts to easily review and understand information.  
Formally, an event relationship network is a directed graph where the vertices are events and the edges 
indicate the dependence relationships among the events.  In addition, it also serves as a concise 
representation of the domain knowledge. We propose to develop techniques to construct, validate and 
complete event relationship networks using the discovered temporal patterns.   

Finally visual data analysis, facilitated by interactive interfaces, enables the detection and validation 
of expected results while enabling unexpected discoveries in science (Hansen et al., 2008) The scientists 
in Subproject 1 will develop scenarios for evaluating the impact of water and land resources management 
decisions on the hydrology to determine the transport of contaminates and eventual ecological 
vulnerabilities.  Our research and development of visualization tools, will support these scientists and 
decision makers to explore “what if” scenarios, define hypotheses, and examine data using multiple 
perspectives and assumptions on fate and transport of the contaminants (Hansen et al., 2008). Utilizing 
our research and tools they can identify coherent patterns and assess the reliability of their assumptions.  

We will develop tools to visualize 
information including condition 
indexes, ecosystem maps, and 
genomic responses maps. We will 
design and develop techniques to 
bridge the gap between the 
application and intelligent techniques. 
Specifically, we will develop an 
interactive tool that can present 
patterns visually, in a way that is 
intuitive and easily understandable for 
the users. In addition, we will use the 
discovered patterns to evaluate and 
validate the relationships among 
samples and observations.   

Software framework for 
synthesizing decision 
recommendations:  

We propose to develop a 
framework for synthesizing decision 
recommendations to aid decision 
makers. This framework will leverage 
FIU-Miner: A Fast, Integrated, and 
User-Friendly System for Data Mining 
in Distributed Environment to develop 
system components (Zeng et al., 
2013). FIU-Miner allows users to 
rapidly configure a complex data Figure 1: FIU-Miner System Architecture 
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analysis task without writing a single line of code. It also helps users conveniently import and integrate 
different analysis programs. Figure 1 shows the system architecture of FIU-Miner. 

3. Broader Impacts
This Subproject addresses one of the significant scientific and engineering challenges by enabling a 

diverse group of environmental scientists to understand and make sense of "big data" ecological 
information. By developing new computational methodologies to support detection of pollutants, 
evaluation of trends, analyzing contaminant transport, and visualization of transient aquatic data, 
scientists and stakeholders can engage in early intervention and restoration of water in order to help the 
public live safely in their environment. The Subproject's literature mining research not only will help 
scientists in the other Subprojects more readily link their findings to those made by others, but also will 
facilitate the work of other environmental scientists in using text literature as tool for their research. 

In addition, the computing research findings of FIU’s CREST Center will be applicable to other 
scientific fields, as we will develop a novel multi-tiered data analysis architecture through data mining and 
visualization research. Developing this research is significantly important, as science is becoming 
increasingly data intensive with heavy reliance on using large datasets and visualization for discovery and 
problem solving. The developed software tools by this Subproject will be released to the open source 
community for further development and dissemination.  
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