

1

Unraveling the Structural Complexity and Diversity of Dissolved Organic Matter using TIMS-FT-ICR MS

Dennys Leyva, Lilian V. Tose, Jacob Porter, Jeremy Wolff, Rudolf Jaffé and Francisco Fernandez-Lima

Motivation

Dissolved Organic Matter (DOM): Complex mixture from bacteria, algal and high plant organic matter degradation. Role in aquatic environments

A full understanding of DOM impact in climate change, ecology, and toxicology, requires a comprehensive knowledge of their molecular composition and structure.

Analytical approaches

Bulk vs molecular level characterization

Challenges in DOM structure elucidation

- High structural heterogeneity
- Wide range of molecular weights
- Isomeric diversity

Environ Sci-Proc Imp., 16(9): 2064-2079, 2014

Coupling TIMS with FT-ICR MS in SRFA analysis

How can TIMS help to understand the complexity of DOM?

Isomeric content in SRFA standard

We provided, for the first time, a lower cutoff estimation of the number of molecular isomers in the SRFA standard.

Experimental

Samples

Pantanal National Park, Brazil

TIMS-FT-ICR MS 7T Solarix

FT-ICR MS/MS: quadrupole isolation-CID 15-20 eV.

Experimental

Trapped Ion Mobility Spectrometry

Non linear scan functions TIMS-FT-ICR MS

P. Benigni; J. Porter; M. Ridgeway; M. Park; F. Fernandez-Lima*. "Increasing analytical separation and duty cycle with non-linear analytical mobility scan functions in TIMS-FT-ICR MS". Anal Chem. 2018, 90 (4), 2446–2450.

Experimental

Samples

Pantanal National Park, Brazil

TIMS-FT-ICR MS 7T Solarix

FT-ICR MS/MS: quadrupole isolation-CID 15-20 eV.

Analytical workflow

How can TIMS-FT-ICR MS help to understand the isomeric diversity of DOM?

TIMS-FT-ICR MS

More than 3,000 chemical components identified

D. Leyva, L. Valadares, J. Porter, J. Wolff, R. Jaffè and F. Fernandez-Lima, *Faraday Discussions*, 2019, DOI: 10.1039/C8FD00221E.

10

6-10 isomers per chemical formula

FT-ICR MS/MS

FT-ICR MS/MS (q-CID) profile of precursor ion 391 m/z

FT-I	CR	MS	5/N	1S (c	I-CIE	D) of	precursor ic	on 391 m/z		Precursor ion m/z	Core Fragment m/z	Structural isomers	-
					-	-	- 				161.0607 C ₁₀ H ₉ O ₂	13	_
CH₂	F CH₃	oten O	itial n∉ CH₄	neutral losse 4 H ₂ O CC		S CO ₂	Core fragment m/z	Number of pathways			163.0763 C10H11O2	7	
5	-	1	-	-	-	3	173.0607 C ₁₁ H₃O ₂	23			165.0192 C ₈ H ₅ O ₄	3	
2	-	-	1	1	4	1					165.056 C ₉ H ₉ O ₃	2	
1	2	-	-	-	4	1 3 2					167.0349 CaHrO4	1	
4	-	2	-	1	4	-				391.1031 C ₁₉ H ₁₉ O ₉	171.0814 C12H11O	23	
5	-	2	-	-	1	2					173.0607 C ₁₁ H ₉ O ₂	23	
1	-	1	1	-	4	1					175.0400 C ₁₀ H ₇ O ₃	15	
5	-	3	-	-	2	-					183.0450 C ₁₂ H ₇ O ₂	40	
1 2 2	2	1	-	-	3	2					183.0814 C13H11O	25	
3	-	2	1	-	3	1					185.0607 C ₁₂ H ₉ O ₂	29	
1	2	1	-	1	5	-					187.0400 C ₁₁ H ₇ O ₃	25	
- 3	2	-	1	- 2	3	2					201.0192 C ₁₁ H ₅ O ₄	25	
4	-	1	-	1	3	1					202.9984 C10H3O5	15	
			D-	aid.			imate of 200				205.0140 C10H5O5	7	
Rapid upper estimate of 260 structural isomers											241.0140 C13H5O5	7	12

In-silico fragmentation

In-silico fragmentation

Conclusions

3,066 chemical components identified.

DOM Isomeric content per chemical formula based on TIMS.

Faraday Discussions, 2019, in press,

Conclusions

DOM isomeric content based on unique neutral loss fragmentation pathways/core fragments.

Acknowledgements

NSF-CREST Program award HRD-1547798 NSF Division of Chemistry, CAREER award CHE-1654274

Advisor Dr. Francisco Fernandez-Lima Postdocs Kevin Jeanne Dit Fouque Jean Haler Graduate students Anthony Castellanos Jacob Porter Yarixa Cintron Kim Dang Elisa Shoff Clerment Olanrewaju Undergraduate students Benjamin Bokor Shirley Hernandez

